Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Braz. j. biol ; 83: e243874, 2023. graf
Article in English | LILACS, VETINDEX | ID: biblio-1285606

ABSTRACT

Abstract In recent days, cheapest alternative carbon source for fermentation purpose is desirable to minimize production cost. Xylanases have become attractive enzymes as their potential in bio-bleaching of pulp and paper industry. The objective of the present study was to identify the potential ability on the xylanase production by locally isolated Bacillus pumilus BS131 by using waste fiber sludge and wheat bran media under submerged fermentation. Culture growth conditions were optimized to obtain significant amount of xylanase. Maximum xylanase production was recorded after 72 hours of incubation at 30 °C and 7 pH with 4.0% substrate concentration. In the nutshell, the production of xylanase using inexpensive waste fiber sludge and wheat-bran as an alternative in place of expensive xylan substrate was more cost effective and environment friendly.


Resumo Nos últimos dias, a fonte alternativa de carbono mais barata para fins de fermentação é desejável para minimizar o custo de produção. As xilanases têm se tornado enzimas atraentes como seu potencial no biobranqueamento da indústria de papel e celulose. O objetivo do presente estudo foi identificar a capacidade potencial na produção de xilanase por Bacillus pumilus BS131 isolado localmente usando lodo de fibra residual e farelo de trigo em meio de fermentação submersa. As condições de crescimento da cultura foram otimizadas para obter uma quantidade significativa de xilanase. A produção máxima de xilanase foi registrada após 72 horas de incubação a 30 °C e pH 7 com concentração de substrato de 4,0%. Resumindo, a produção de xilanase usando lodo de fibra residual de baixo custo e farelo de trigo como uma alternativa no lugar do substrato de xilano caro foi mais econômica e ecológica.


Subject(s)
Bacillus/metabolism , Bacillus pumilus/metabolism , Sewage , Temperature , Dietary Fiber , Endo-1,4-beta Xylanases/metabolism , Fermentation , Hydrogen-Ion Concentration
2.
Braz. j. biol ; 83: 1-6, 2023. graf
Article in English | LILACS, VETINDEX | ID: biblio-1468845

ABSTRACT

In recent days, cheapest alternative carbon source for fermentation purpose is desirable to minimize production cost. Xylanases have become attractive enzymes as their potential in bio-bleaching of pulp and paper industry. The objective of the present study was to identify the potential ability on the xylanase production by locally isolated Bacillus pumilus BS131 by using waste fiber sludge and wheat bran media under submerged fermentation. Culture growth conditions were optimized to obtain significant amount of xylanase. Maximum xylanase production was recorded after 72 hours of incubation at 30 °C and 7 pH with 4.0% substrate concentration. In the nutshell, the production of xylanase using inexpensive waste fiber sludge and wheat-bran as an alternative in place of expensive xylan substrate was more cost effective and environment friendly.


Nos últimos dias, a fonte alternativa de carbono mais barata para fins de fermentação é desejável para minimizar o custo de produção. As xilanases têm se tornado enzimas atraentes como seu potencial no biobranqueamento da indústria de papel e celulose. O objetivo do presente estudo foi identificar a capacidade potencial na produção de xilanase por Bacillus pumilus BS131 isolado localmente usando lodo de fibra residual e farelo de trigo em meio de fermentação submersa. As condições de crescimento da cultura foram otimizadas para obter uma quantidade significativa de xilanase. A produção máxima de xilanase foi registrada após 72 horas de incubação a 30 °C e pH 7 com concentração de substrato de 4,0%. Resumindo, a produção de xilanase usando lodo de fibra residual de baixo custo e farelo de trigo como uma alternativa no lugar do substrato de xilano caro foi mais econômica e ecológica.


Subject(s)
Bacillus pumilus/chemistry , Xylans/analysis , Substrate Specificity
3.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469061

ABSTRACT

Abstract In recent days, cheapest alternative carbon source for fermentation purpose is desirable to minimize production cost. Xylanases have become attractive enzymes as their potential in bio-bleaching of pulp and paper industry. The objective of the present study was to identify the potential ability on the xylanase production by locally isolated Bacillus pumilus BS131 by using waste fiber sludge and wheat bran media under submerged fermentation. Culture growth conditions were optimized to obtain significant amount of xylanase. Maximum xylanase production was recorded after 72 hours of incubation at 30 °C and 7 pH with 4.0% substrate concentration. In the nutshell, the production of xylanase using inexpensive waste fiber sludge and wheat-bran as an alternative in place of expensive xylan substrate was more cost effective and environment friendly.


Resumo Nos últimos dias, a fonte alternativa de carbono mais barata para fins de fermentação é desejável para minimizar o custo de produção. As xilanases têm se tornado enzimas atraentes como seu potencial no biobranqueamento da indústria de papel e celulose. O objetivo do presente estudo foi identificar a capacidade potencial na produção de xilanase por Bacillus pumilus BS131 isolado localmente usando lodo de fibra residual e farelo de trigo em meio de fermentação submersa. As condições de crescimento da cultura foram otimizadas para obter uma quantidade significativa de xilanase. A produção máxima de xilanase foi registrada após 72 horas de incubação a 30 °C e pH 7 com concentração de substrato de 4,0%. Resumindo, a produção de xilanase usando lodo de fibra residual de baixo custo e farelo de trigo como uma alternativa no lugar do substrato de xilano caro foi mais econômica e ecológica.

4.
Article | IMSEAR | ID: sea-217187

ABSTRACT

Polyhydroxyalkanoates (PHA) are renewable, biodegradable biopolymer intracellularly accumulated by wide array of microorganisms as carbon reserve. This study investigates the influence of various cultural conditions on PHA production by a recently isolated local species under submerged fermentation. Six PHA producing strains were identified by 16S rDNA gene sequencing and strain Priestia flexa OWO1 showed satisfactory PHA productivity. The effects of production parameters were investigated and extraction of PHA was carried out using sodium hypochlorite method and maximum amount was detected after 72h. Maximum PHA production was obtained at incubation period of 48h, pH of 7.0 and temperature of 30oC. Amongst the hydrolysate of agro waste used, brewers spent grain (BSG) gave maximum yield of 3.01g/L while beans bran powder gave the highest PHA yields of 3.9 g/L amongst the organic nitrogen sources tested. Analysis of the crude PHA by Fourier Transform Infrared Spectroscopy (FT-IR) showed the presence of methyl, methylene as well as carbonyl functional groups. PHA production was higher after optimizing the production conditions as compared to basal medium therefore the utilization of these cheap renewable resources as alternative substrates for production of PHA make the process cost effective and sustainable.

5.
Article | IMSEAR | ID: sea-217186

ABSTRACT

L-Lysine is an essential amino acid that is required in the diet of humans and animals. It is utilized in human medicine, cosmetics and pharmaceutical industry. ’The influence of agitation rates, pH and calcium carbonate on L-lysine production by Bacillus subtilis using agricultural products as carbon and nitrogen sources was studied. The L-lysine-producing bacteria had already been isolated from Nigerian soil. They were purified and Identified as B. subtilis PR13 and B. subtilis PR9, using cultural, biochemical and molecular characteristics. Optimization of some parameters which included agitation rates, pH values and CaCO3 concentrations, on L-lysine production by the Bacillus species was carried out. The L-lysine was produced in 250 ml flasks containing fermentation media (FM1 and FM2). The findings revealed that, enhanced L-lysine yield of 2.10 and 1.33 mg/ml was observed at agitation rate of 180 rpm for B. subtilis PR13 and PR9 respectively. There was a positive correlation between agitation rates and L- lysine production by B. subtilis PR13 and PR9 (r = 0.96 and 0.83 respectively). The pH of 7.5, stimulated optimum L- lysine yield of 2.27 mg/ml for PR13 and 1.38 mg/ml for PR9. There was a positive correlation between pH values and L-lysine production by B. subtilis PR13 and PR 9 (r = 0.63 and 0.50 respectively). The supplementation of 40g/l of CaCO3, enhanced optimum L-lysine yield of 2.18 mg/ml for B. subtilis PR 13 and 1.30 mg/ml for B. subtilis PR9. There was a positive correlation between varying concentrations of calcium carbonate and L-lysine production by the B. subtilis PR13 (r =0.35), while negative correlation was observed for B. subtilis PR 9 (r = -0.10). The results obtained in the study illustrated that the optimization of process parameters could increase the L-lysine yield from agricultural products by B. subtilis PR13 and B. subtilis PR9.

6.
Braz. arch. biol. technol ; 64: e21200319, 2021. tab, graf
Article in English | LILACS | ID: biblio-1345491

ABSTRACT

Abstract Alkaline pectinase is the utmost significant industrial enzyme of the bioscouring process. By considering bio scouring of cotton, 30 microbial isolates from fruit and vegetable waste rich dump soil of Solang Valley and Vasishta (Manali, Himachal Pradesh, India) were isolated and screened for the alkaline pectinase production in the current research work. Only four isolates P3, P16, P21, and P27 were capable to produce extracellular alkaline pectinase at pH 9. Further by applying submerged fermentation, the alkaline pectinase production was quantitatively screened. The most efficient isolate was P3 identified as Bacillus tropicus, based on morphological, biochemical, and molecular characterization. Molecular characteristics confirmed by 16S rDNA sequence analysis. The nucleotide sequence of the isolate was novel with a 97% similarity index and submitted to the GenBank with accession number MK332379. The Bacillus strain selected was active at broad pH range from 8-10.5 and a temperature range from 25-50 oC. Optimum pH and temperature observed were 9 and 37 oC respectively and can be suitably used for the bio scouring process for the pretreatment of the fabrics.


Subject(s)
Polygalacturonase , Bacillus/isolation & purification , Fermentation , Garbage
7.
J Environ Biol ; 2020 Jan; 41(1): 118-124
Article | IMSEAR | ID: sea-214482

ABSTRACT

Aim: To analyze the effect of carbon/nitrogen (C/N) ratio on polyhydroxyalkanoates (PHAs) production by Bacillus species under submerged fermentation process.Methodology: Preserved polyhydroxyalkanoates producing Bacillus sp. C1 (2013) (KF626477) was revived and growth parameters were optimized by one factor at a time approach. The effect of C/N ratio and the influence of time period on polyhydroxyalkanoates production through submerged fermentation process was evaluated under optimized condition. Primary structural and morphological characterization of extracted polyhydroxyalkanoates was carried out by Fourier Transform Infra-Red Spectroscopy and Field Emission-Scanning Electron Microscopy. Results: Bacillus sp. C1 (2013) produced higher cell biomass in mineral salt medium at pH 9.0, temperature 37oC, dextrose (2%) and ammonium sulphate (1%) as carbon and nitrogen source with 15% inoculum size. Under optimized condition, higher polyhydroxyalkanoates production of 1.09 g l-1 (49.2%) was obtained at 48 hrs with 2: 0.4 C/N ratio. However, in our previous study 0.909 gl-1 of PHAs was produced by the bacteria at 6:1 carbon to nitrogen ratio. Fourier Transform Infra-Red Spectroscopic analysis showed high intense absorption bands at 1720.18 cm−1 resembled to ester carbonyl functional group of PHB, which is the most common homopolymer of PHAs. Surface morphology of poly-beta-hydroxybutyrate film was rough and fairly regular as revealed from Field Emission-Scanning Electron Microscopic imaging. Interpretation: Poly-beta-hydroxybutyrate production by the bacteria increased under higher degrees of nitrogen deficient condition. Thus, optimized C/N ratio can improve the cost affordability of poly-beta-hydroxybutyrate production, however, further research in contrast to different bacteria is highly essential in this regard.

8.
Electron. j. biotechnol ; 43: 1-7, Jan. 2020. tab, graf
Article in English | LILACS | ID: biblio-1087465

ABSTRACT

Background: Biotechnological processes are part of modern industry as well as stricter environmental requirements. The need to reduce production costs and pollution demands for alternatives that involve the integral use of agro-industrial waste to produce bioactive compounds. The citrus industry generates large amounts of wastes due to the destruction of the fruits by microorganisms and insects together with the large amounts of orange waste generated during the production of juice and for sale fresh. The aim of this study was used orange wastes rich in polyphenolic compounds can be used as source carbon of Aspergillus fumigatus MUM 1603 to generate high added value compounds, for example, ellagic acid and other molecules of polyphenolic origin through submerged fermentation system. Results: The orange peel waste had a high concentration of polyphenols, 28% being condensed, 27% ellagitannins, 25% flavonoids and 20% gallotannins. The major polyphenolic compounds were catechin, EA and quercetin. The conditions, using an experimental design of central compounds, that allow the production of the maximum concentration of EA (18.68 mg/g) were found to be: temperature 30°C, inoculum 2 × 107 (spores/g) and orange peel polyphenols 6.2 (g/L). Conclusion: The submerged fermentation process is an effective methodology for the biotransformation of molecules present in orange waste to obtain high value-added as ellagic acid that can be used as powerful antioxidants, antibacterial and other applications.


Subject(s)
Waste Management , Citrus sinensis/chemistry , Ellagic Acid , Aspergillus fumigatus , Waste Products/analysis , Flavonoids/analysis , Biotechnology/methods , Hydrolyzable Tannins/analysis , Fermentation , Polyphenols/analysis , Phytochemicals
9.
Braz. arch. biol. technol ; 63: e20190024, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132186

ABSTRACT

Abstract Pigments produced by submerged fermentation of three filamentous fungi isolated from Brazilian caves, namely Aspergillus keveii, Penicillium flavigenum, and Epicoccum nigrum, were submitted to spray drying in presence of the adjuvants maltodextrin, modified starch or gum arabic. Yellow fine powders with low moisture content and water activity, and high color retention (> 70%) were successfully generated with a high product recovery ratio (> 50%), independently of the adjuvant used. The dried products have enhanced stability and potential to might be used as a natural colorant in food and pharmaceutical applications.


Subject(s)
Animals , Pigments, Biological/biosynthesis , Starch/biosynthesis , Fungi/metabolism , Gum Arabic , Maltose/biosynthesis , Aspergillus , Brazil , Caves/microbiology , Fungi/classification , Maltose/analogs & derivatives , Models, Theoretical
10.
Electron. j. biotechnol ; 37: 34-40, Jan. 2019. tab, graf
Article in English | LILACS | ID: biblio-1051256

ABSTRACT

Since more than twenty years ago, some species of bacteria and fungi have been used to produce protein biomass or single-cell protein (SCP), with inexpensive feedstock and wastes being used as their sources of carbon and energy. The role of SCP as a safe food and feed is being highlighted more because of the worldwide protein scarcity. Even though SCP has been successfully commercialized in the UK for decades, study of optimal fermentation conditions, various potential substrates, and a broad range of microorganisms is still being pursued by many researchers. In this article, commonly used methods for the production of SCP and different fermentation systems are briefly reviewed, with submerged fermentation being highlighted as a more commonly used method. Emphasis is given to the effect of influencing factors on the biomass yield and productivity in an effort to provide a comprehensive review for researchers in related fields of interest.


Subject(s)
Dietary Proteins/metabolism , Fermentation , Fungi/metabolism , Aeration , Biomass , Food
11.
Rev. colomb. biotecnol ; 21(2): 63-76, jul.-dic. 2019. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1058342

ABSTRACT

ABSTRACT Lactic acid bacteria (LAB) are currently of great importance given their increasing use in the improvement of human and anima health and nutrition. They exhibit complex nutritional requirements, which is the reason why their production costs are high. Research efforts are being made aimed at evaluating different substrates for their production as well as the production of valuable metabolites from them. The purpose of this paper is to expose the main research and development trends for LAB production for industrial purposes with emphasis on the culture media required for their growth. The web of Science databases as well as the Google Patent Search tool were used in order to gather and analyze the scientific and technical information published in the last twelve years relating to LAB and their culture media. The use of milk, industrial cheese whey, cane molasses, hydrolyzed starches, lignocellulosic materials, organic food waste and bovine blood plasma, among others, have been proposed for Lactobacillus cultivation with the purpose of reducing costs and increasing performance in their production. Research groups and centers have the responsibility of intensifying their efforts to offer highly efficient technological alternatives to the industry that allow the production and application of LAB as a growth factor for the food sector. Also, research in prebiotic ingredients or additives derived from LAB that allow the enhancement of the benefits to the consumer must be continued. In this regard, it is necessary to increase the international visibility of Colombian scientific production in this area.


RESUMEN Las bacterias del ácido láctico (LAB) son actualmente de gran importancia dado su uso creciente en la mejora de la salud y nutrición humana y animal. Presentan requerimientos nutricionales complejos, por lo que sus costos de producción son altos. Se están realizando esfuerzos de investigación para evaluar diferentes sustratos para su producción, así como la producción de metabolitos valiosos a partir de ellos. El propósito de este documento es exponer las principales tendencias de investigación y desarrollo para la producción de LAB con fines industriales, con énfasis en los medios de cultivo necesarios para su crecimiento. Las bases de datos de Web of Science y la herramienta de búsqueda de patentes de Google se utilizaron para recopilar y analizar la información científica y técnica publicada en los últimos doce años relacionada con LAB y sus medios de cultivo. Se ha propuesto el uso de leche, suero de queso industrial, melaza de caña, almidones hidrolizados, materiales lignocelulósicos, desechos de alimentos orgánicos y plasma sanguíneo bovino, entre otros, para el cultivo de Lactobacillus con el fin de reducir costos y aumentar el rendimiento de su producción. Los grupos y centros de investigación tienen la responsabilidad de intensificar sus esfuerzos para ofrecer alternativas tecnológicas altamente eficientes a la industria que permitan la producción y aplicación de LAB como factor de crecimiento para el sector alimentario. Además, la investigación en ingredientes prebióticos o aditivos derivados de LAB que permite la mejora de los beneficios para el consumidor debe continuar. En este sentido, es necesario aumentar la visibilidad internacional de la producción científica colombiana en esta área.

12.
Biosci. j. (Online) ; 35(5): 1552-1559, sept./oct. 2019. graf
Article in English | LILACS | ID: biblio-1049051

ABSTRACT

ß-glucosidase has wide spectrum of biotechnological applications in different industries including food, textile, laundry detergents, pulp and paper, pharmaceutical and biofuel industry. The present investigation related to isolation, screening, and process optimization of fungal strain for enhanced production of ß-glucosidase (BGL). For this purpose, different fungal stains were isolated from different sources including soil, fruits, bark of tree as well as from the compost. The screening of fungal strain for BGL production was carried out via submerged fermentation. All the tested strains were identified on the basis of micro and macroscopic features. The fungal strain having greater ability for BGL synthesis among tested ones wasidentified as Aspergillus niger and given the code SBT-15. The process parameter including fermentation media, temperature, pH, rate of fermentation, carbon and nitrogen sources, volume of media were optimized. Five different fermentation media were evaluatedM3medium gave maximum production. The optimal conditions for BGL production was 72 hours of incubation at 40°C, pH 6 and 50 ml fermentation medium. Glucose (1%) and ammonium sulphate(3%) were optimized as best carbon and nitrogen sources, respectively.


A ß-glicosidase possui amplo espectro de aplicações biotecnológicas em diferentes indústrias, incluindo alimentos, têxteis, detergentes para lavanderia, papel e celulose, indústria farmacêutica e de biocombustíveis, etc. A presente investigação relaciona-se ao isolamento e triagem e otimização de processos de cepas fúngicas para produção aumentada de ß- glucosidase (BGL). Para este efeito, diferentes manchas fúngicas foram isoladas a partir de diferentes fontes, incluindo solo, frutos, casca de árvore, bem como a partir do composto. A triagem da linhagem fúngica para produção de BGL foi realizada via fermentaçãosubmersa. Todas as cepas testadas foram identificadas com base em características micro e macroscópicas. A linhagem fúngica com maior capacidade de síntese de BGL entre os testados foi identificada como Aspergillus niger e recebeu o código SBT-15. O parâmetro do processo, incluindo meios de fermentação, temperatura, pH, taxa de fermentação, fontes de carbono e nitrogênio, volume de mídia foram otimizados. Cinco meios de fermentação diferentes foram avaliados. O meio M3 deu a produção máxima. As condições ótimas para a produção de BGL foram 72 horas de incubação a 40 ° C, pH 6 e 50ml de meio de fermentação. Glicose (1%) e sulfato de amônio (3%) foram otimizados como melhores fontes de carbono e nitrogênio, respectivamente.


Subject(s)
Aspergillus niger , Fermentation , Fungi , Glucosidases
13.
Biosci. j. (Online) ; 35(3): 933-940, may./jun. 2019. tab
Article in English | LILACS | ID: biblio-1048705

ABSTRACT

Endoglucanases are enzymes widely employed in different industrial fields, albeit with high production costs. Studies on new microbial sources and low-cost substrates are highly relevant, including those on agro-industrial. Current analysis evaluates peanut hull (PH) and sawdust (SD) as substrates for submerged cultures of 14 endophytic fungi isolated from grapevine (Vitis labrusca L.) cultivars Bordô and Concord. Endophytes were grown on a carboxymethylcellulose (CMC) medium and the cup plate assay showed that eight strains (belonging to genera Cochliobolus, Diaporthe, Fusarium and Phoma) had positive results: enzymatic halos ranged from 10.8±0.02to 15.5±0.07 mm in diameter. Diaporthe sp. strains (GenBank accession codes KM362392, KM362368 and KM362378) and Fusariumculmorum KM362384 were highlighted as the most promising sources. Further, PH and SD as substrates for the fermentation of these fungi were evaluated by the cup plate assay and endoglucanase activity assay. Highest halo diameters were obtained for Diaporthe sp. KM362392: 16.1±0.01 mm (CMC), 14.5±0.01 mm (PH) and 14.7±0.03 mm (SD). The fungus also presented the highest levels of endoglucanase activity: analysis of variance revealed that CMC (3.52±0.98 µmol/min), PH (2.93±0.23 µmol/min) and SD (3.26±0.38 µmol/min) were similarly efficient as substrates. Results deepen knowledge on V. labrusca endophytes that may be endoglucanase sources, eventhough further optimizations in submerged cultures with PH and SD should be undertaken to increase theenzymatic production from these wastes.


Endoglucanases são enzimas amplamente empregadas em diferentes setores industriais; embora sua produção apresente custos elevados. Estudos sobre novas fontes microbianas e substratos mais baratos são de grande importância, incluindo os resíduos agroindustriais. Nesse estudo, casca de amendoim (CA) e serragem (SE) foram testadas como substratos para o cultivo submerso de 14 fungos endofíticos isolados das cultivares Bordô e Concord de videira (Vitis labrusca L.) Os endófitos foram crescidos em meio contendo carboximetilcelulose (CMC) e o ensaio cup plate mostrou resultados positivos para oito fungos (pertencentes aos gêneros Cochliobolus, Diaporthe, Fusarium and Phoma); os halos enzimáticos variaram entre 10,8±0,02 e 15,5±0,07 mm de diâmetro. Linhagens de Diaporthe sp. (códigos de acesso no GenBank KM362392, KM362368 e KM362378) e Fusariumculmorum KM362384 se destacaram como produtores mais promissores. Então, o uso de CA e SE como substratos para a fermentação desses fungos foi avaliado pelo ensaio cup plate e pela quantificação da atividade de endoglucanase. Os maiores halos enzimáticos foram obtidos para Diaporthe sp. KM362392: 16,1±0,01 mm (CMC), 14,5±0,01 mm (CA) e 14,7±0,03 mm (SE). Esse fungo também apresentou os maiores níveis de endoglucanase: a análise de variância revelou que CMC (3,52±0,98 µmol/min), CA (2,93±0,23 µmol/min) e SE (3,26±0,38 µmol/min) foram substratos similarmente eficientes. Esses resultados expandem o conhecimento sobre endófitos de V. labrusca que são fontes de endoglucanases; futuras otimizações quanto ao cultivo submerso com CA e SE podem ser utilizadas para aumentar a produção enzimática a partir do uso desses resíduos.


Subject(s)
Waste Products , Cellulase , Substrates for Biological Treatment , Enzymes , Agribusiness , Endophytes
14.
Braz. arch. biol. technol ; 62: e19180113, 2019. tab, graf
Article in English | LILACS | ID: biblio-1039128

ABSTRACT

Abstract This study aimed to evaluate the effects of variables on the process of lipases production by Aspergillus niger C by submerged fermentation (SmF). The production assays were performed in shake flasks for 72 hours at 150 rpm and 32°C. First, a fractional factorial design 25-1 (FFD) was carried out to evaluate the effect of the following process variables: sucrose, ammonium sulphate, soybean oil, yeast extract concentration and pH. After the selection of the variables that significantly influenced the lipase production, a central composite rotational design 22 (CCRD) was used, aiming to find the most favorable operational conditions. The selected assay condition (15.0 g.L-1 sucrose, 4.0 g.L-1 ammonium sulphate, 4.0 g.L-1 soybean oil and 1.0 g.L-1 yeast extract at pH 5.0) was the one that presented a lipase activity of 27.46 U.mL-1. It was very close to that best assay (30.76 U.mL-1), but using half of the inducer concentration, consequently reducing process cost. The kinetics of lipase production showed that the highest specific activity was 57.17 U.mg-1. The pH and temperature effects on lipase activity produced in this study was investigated. The optimum activity was found in a more acidic pH (5.0-6.0) and 55°C.


Subject(s)
Aspergillus niger/enzymology , Lipase/analysis , Research Design , Fermentation
15.
Chinese Journal of Biotechnology ; (12): 749-758, 2019.
Article in Chinese | WPRIM | ID: wpr-771335

ABSTRACT

Filamentous fungi are one of the platforms for producing fermented products. The specific characteristic of their submerged fermentation is the aggregation of mycelia that is affected by environmental conditions, leading to significantly different rheology for fermentation broth. Such a rheological change not only affects the transfer of mass, heat and momentum, but also the biosynthesis of target products and the efficiency of their production. In this article, strategies for morphological regulation of filamentous fungi are reviewed, and the impact of calcium signal transduction and chitin biosynthesis on apical growth of hyphae and branching of mycelia for their aggregation are further commented.


Subject(s)
Fermentation , Fungi , Physiology , Hot Temperature , Mycelium , Metabolism , Rheology
16.
Biosci. j. (Online) ; 34(4): 1025-1032, july/aug. 2018. tab, graf
Article in English | LILACS | ID: biblio-967254

ABSTRACT

The present study deals with the isolation screening and optimization of fungal strain for pectinase production. The fungal strains were isolated from different sources, including soil, fruits etc. Qualitative screening was performed on the basis of the pectin hydrolysis zone. While, quantitative screening was carried out employing submerged fermentation. Among all the strains the strains showing highest pectinolytic potential were selected identified and assigned the code Aspergillus niger ABT-5.The influence of different fermentation media on pectinase production was evaluated. The M5 medium containing 10g wheat bran, nutrient medium containing (g/l) of (NH4)2SO4 6.0, K2HPO4 6.0, KH2PO4 6.0, MgSO4.7H2O 0.1 gave the highest pectinase production. The other important physico chemical parameters including incubation period, temperature, and volume of media, size of inoculum, carbon and nitrogen sources were also optimized for pectinase production. The highest pectinase production (15.5U/ml) was obtained at 72h of incubation, pH 6, temperature 30°C, volume of media 50ml. Fructose and urea were designated as best carbon and nitrogen sources subsequently.


O presente estudo trata da triagem de isolamento e otimização da cepa fúngica para produção de pectinase. As cepas fúngicas foram isoladas de diferentes fontes, incluindo solo, frutas, etc. A triagem qualitativa foi realizada com base na zona de hidrólise da pectina. Enquanto, a triagem quantitativa foi realizada utilizando fermentação submersa. Entre todas as cepas, as cepas que apresentaram maior potencial pectinolítico foram selecionadas e atribuídas ao código Aspergillus niger ABT-5. Avaliou-se a influência de diferentes meios de fermentação na produção de pectinase. O meio M5 contendo 10g de farelo de trigo, meio nutriente contendo (g / l) de (NH4)2SO4 6.0, K2HPO4 6.0, KH2PO4 6.0, MgSO4.7H2O 0.1, proporcionou a maior produção de pectinase. Os outros parâmetros físico-químicos importantes, incluindo período de incubação, temperatura e volume dos meios, tamanho do inóculo, fontes de carbono e nitrogênio também foram otimizados para a produção de pectinase. A maior produção de pectinase (15,5U / ml) foi obtida às 72h de incubação, pH 6, temperatura 30 ºC, volume dos meios 50ml. A frutose e a ureia foram designadas como melhores fontes de carbono e nitrogênio posteriormente.


Subject(s)
Polygalacturonase , Aspergillus niger , Triticum , Fermentation
17.
Electron. j. biotechnol ; 31: 84-92, Jan. 2018. graf, tab, ilus
Article in English | LILACS | ID: biblio-1022139

ABSTRACT

Background: Cellulolytic enzymes of microbial origin have great industrial importance because of their wide application in various industrial sectors. Fungi are considered the most efficient producers of these enzymes. Bioprospecting survey to identify fungal sources of biomass-hydrolyzing enzymes from a high-diversity environment is an important approach to discover interesting strains for bioprocess uses. In this study, we evaluated the production of endoglucanase (CMCase) and ß-glucosidase, enzymes from the lignocellulolytic complex, produced by a native fungus. Penicillium sp. LMI01 was isolated from decaying plant material in the Amazon region, and its performance was compared with that of the standard isolate Trichoderma reesei QM9414 under submerged fermentation conditions. Results: The effectiveness of LMI01 was similar to that of QM9414 in volumetric enzyme activity (U/mL); however, the specific enzyme activity (U/mg) of the former was higher, corresponding to 24.170 U/mg of CMCase and 1.345 U/mg of ß-glucosidase. The enzymes produced by LMI01 had the following physicochemical properties: CMCase activity was optimal at pH 4.2 and the ß-glucosidase activity was optimal at pH 6.0. Both CMCase and ß-glucosidase had an optimum temperature at 60°C and were thermostable between 50 and 60°C. The electrophoretic profile of the proteins secreted by LMI01 indicated that this isolate produced at least two enzymes with CMCase activity, with approximate molecular masses of 50 and 35 kDa, and ß-glucosidases with molecular masses between 70 and 100 kDa. Conclusions: The effectiveness and characteristics of these enzymes indicate that LMI01 can be an alternative for the hydrolysis of lignocellulosic materials and should be tested in commercial formulations.


Subject(s)
Penicillium/enzymology , Cellulase/biosynthesis , beta-Glucosidase/biosynthesis , Oligosaccharides , Temperature , Trichoderma/enzymology , Enzyme Stability , Cellulase/metabolism , beta-Glucosidase/metabolism , Amazonian Ecosystem , Biocatalysis , Fermentation , Hydrogen-Ion Concentration , Hydrolysis , Lignin/metabolism
18.
Arq. bras. med. vet. zootec ; 69(1): 123-129, jan.-fev. 2017. tab, graf
Article in Portuguese | LILACS, VETINDEX | ID: biblio-834162

ABSTRACT

As proteases fibrinolíticas são capazes de degradar coágulos de fibrina formados dentro dos vasos sanguíneos, evitando a trombose intravascular. Em animais, a tromboflebite, que acomete frequentemente os equinos, ocasiona, em seus casos graves, a obstrução jugular e também um edema de laringe, derivando a obstrução das vias aéreas, o que possibilita um edema cerebral, ocorrendo o óbito do animal. Devido ao fato de o tratamento ser de custo elevado, faz-se necessária a investigação de outras fontesde proteases fibrinolíticas com custos menores e com menos efeitos colaterais. Diante disso, este estudo tem como objetivo produzir e caracterizar proteases fibrinolíticas obtidas de Streptomyces parvulus DPUA 1573. Para produção da enzima, foi utilizado um planejamento fatorial 24 avaliando a concentração da farinha de soja (0,5, 1,0 e 1,5%) e da glicose (0, 0,5 e 1,0g/L), temperatura (28, 32 e 37ºC) e agitação (150, 200 e 250rpm) sobre a biomassa e a atividade fibrinolítica. Pode-se verificar que a protease fibrinolítica apresentou atividade máxima (835U/mL) nas condições de concentração de 1,5% de soja, 1g/L de glicose, 28°C e 150rpm com 48 horas de fermentação. A protease fibrinolítica obtida teve temperatura e pH ótimos de 55°C e pH 9,0, respectivamente. A atividade enzimática foi inibida pelo EDTA, pelo íon Fe2+ e pelo SDS, o que indicou a enzima ser uma metaloprotease. A linhagem Streptomyces parvulus DPUA 1573 foi capaz de produzir protease fibrinolítica, possuindo características bioquímicas favoráveis à aplicação na medicina veterinária e possivelmente humana.(AU)


Fibrinolytic proteases are able to degrade fibrin clot formed in the blood vessel, avoiding intravascular thrombosis. In animals, thrombophlebitis often affects horses, and in severe cases causes obstruction of the jugular and laryngeal edema leading to airway obstruction allowing cerebral edema resulting in the death of the animal. Since treatment is costly, the investigation of other sources of fibrinolytic proteases at lower cost and with fewer side effects is needed. Thus, this study aims to produce and characterize fibrinolytic proteases from Streptomyces parvulus DPUA 1573. For enzyme production, a factorial design was performed to evaluate 24 soybean flour concentration (0.5, 1.0 and 1.5%) and glucose (0, 0.5 and 1.0g/L), temperature (28, 32 and 37°C) and agitation (150, 200 and 250rpm) on biomass and fibrinolytic activity. Fibrinolytic protease showed maximum activity (835 U/mL) under these conditions: 1.5% soybean flour, 1g/L glucose, 28°C, and 150rpm 48 hours of fermentation. The optimal temperature was 55°C and optimal pH was 9.0. Fibrinolytic protease activity was inhibited by EDTA, the ion Fe2+, and by SDS, which indicated that the enzyme is a metallo-protease. The strain Streptomyces parvulus DPUA 1573 was able to produce fibrinolytic protease with biochemical characteristics favorable for application in veterinary and human medicine.(AU)


Subject(s)
Fermentation , Fibrinolytic Agents , Peptide Hydrolases/analysis , Streptomyces , Metalloproteases
19.
China Pharmacy ; (12): 3079-3083, 2017.
Article in Chinese | WPRIM | ID: wpr-618243

ABSTRACT

OBJECTIVE:To explore basic technology for synthesis of active ingredients of Ophiocordyceps xuefengensis,and provide necessary technical support for comprehensive development of O. xuefengensis sourse. METHODS:Submerged fermenta-tion method was used to cultivate the mycelium,achieving efficient synthesis of active ingredients by controlling medium composi-tion and cultivation conditions. Using the bacteria as starting strain,the effects of different carbon sources (sucrose,glucose and soluble starch),different nitrogen sources (peptone,yeast extract powder,yeast extract,sodium nitrate,potassium nitrate and urea),different vitamin B(vitamin B1 and vitamin B complex)and different initial pH(pH was set at 4,5,6,7,8 and 9,re-spectively)on mycelial growth,extracellular and intracellular polysaccharide synthesis,cordycepin synthesis and intracellular triter-penoid synthesis were investigated to screen the optimal medium composition. RESULTS:The optimal carbon source,nitrogen source,vitamin B and initial pH were sucrose,yeast extract powder,vitamin B1 and 8,respectively. High biomass and metabolite accumulation levels can be obtained when carbon source was sucrose,nitrogen source was yeast extract powder,adding 0.1 g/L vi-tamin B1 with initial pH of 8. CONCLUSIONS:O. xuefengensis can efficiently accumulate metabolites,and achieve the optimiza-tion of strain cell growth and synthesis of active metabolite by optimizing and controlling the fermentation process.

20.
Braz. j. microbiol ; 47(3): 658-664, July-Sept. 2016. tab, graf
Article in English | LILACS | ID: lil-788950

ABSTRACT

ABSTRACT Edible mushroom species are considered as an adequate source of food in a healthy diet due to high content of protein, fiber, vitamins, and a variety of minerals. The representatives of Pleurotus genus are characterized by distinct gastronomic, nutritional, and medicinal properties among the edible mushrooms commercialized worldwide. In the present study, the growth of mycelial biomass of Pleurotus albidus cultivated in submerged fermentation was evaluated. Saccharose, fructose, and maltose were the three main carbon sources for mycelial biomass formation with corresponding yields of 7.28 g L−1, 7.07 g L−1, and 6.99 g L−1. Inorganic nitrogen sources did not stimulate growth and the optimal yield was significantly higher with yeast extract (7.98 g L−1). The factorial design used to evaluate the influence of saccharose and yeast extract concentration, agitation speed, and initial pH indicated that all variables significantly influenced the production of biomass, especially the concentration of saccharose. The greater amount of saccharose resulted in the production of significantly more biomass. The highest mycelial biomass production (9.81 g L−1) was reached in the medium formulated with 30.0 g L−1 saccharose, 2.5 g L−1 yeast extract, pH 7.0, and a speed of agitation at 180 rpm. Furthermore, P. albidus manifested different aspects of morphology and physiology under the growth conditions employed. Media composition affected mycelial biomass production indicating that the diversification of carbon sources promoted its improvement and can be used as food or supplement.


Subject(s)
Biomass , Pleurotus/physiology , Mycelium , Fermentation , Carbon/metabolism , Pleurotus/ultrastructure , Carbohydrate Metabolism , Nitrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL